Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732052

RESUMO

Fatty acid desaturase 1 (FADS1) is a rate-limiting enzyme in long-chain polyunsaturated fatty acid (LCPUFA) synthesis. Reduced activity of FADS1 was observed in metabolic dysfunction-associated steatotic liver disease (MASLD). The aim of this study was to determine whether adeno-associated virus serotype 8 (AAV8) mediated hepatocyte-specific overexpression of Fads1 (AAV8-Fads1) attenuates western diet-induced metabolic phenotypes in a rat model. Male weanling Sprague-Dawley rats were fed with a chow diet, or low-fat high-fructose (LFHFr) or high-fat high-fructose diet (HFHFr) ad libitum for 8 weeks. Metabolic phenotypes were evaluated at the endpoint. AAV8-Fads1 injection restored hepatic FADS1 protein levels in both LFHFr and HFHFr-fed rats. While AAV8-Fads1 injection led to improved glucose tolerance and insulin signaling in LFHFr-fed rats, it significantly reduced plasma triglyceride (by ~50%) and hepatic cholesterol levels (by ~25%) in HFHFr-fed rats. Hepatic lipidomics analysis showed that FADS1 activity was rescued by AAV8-FADS1 in HFHFr-fed rats, as shown by the restored arachidonic acid (AA)/dihomo-γ-linolenic acid (DGLA) ratio, and that was associated with reduced monounsaturated fatty acid (MUFA). Our data suggest that the beneficial role of AAV8-Fads1 is likely mediated by the inhibition of fatty acid re-esterification. FADS1 is a promising therapeutic target for MASLD in a diet-dependent manner.


Assuntos
Dessaturase de Ácido Graxo Delta-5 , Dieta Ocidental , Ácidos Graxos Dessaturases , Hepatócitos , Ratos Sprague-Dawley , Animais , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Dessaturases/genética , Masculino , Ratos , Dessaturase de Ácido Graxo Delta-5/metabolismo , Dieta Ocidental/efeitos adversos , Hepatócitos/metabolismo , Fenótipo , Modelos Animais de Doenças , Dependovirus/genética , Fígado/metabolismo , Triglicerídeos/metabolismo , Frutose/metabolismo
2.
J Neuroinflammation ; 21(1): 129, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745337

RESUMO

Diet-induced increase in body weight is a growing health concern worldwide. Often accompanied by a low-grade metabolic inflammation that changes systemic functions, diet-induced alterations may contribute to neurodegenerative disorder progression as well. This study aims to non-invasively investigate diet-induced metabolic and inflammatory effects in the brain of an APPPS1 mouse model of Alzheimer's disease. [18F]FDG, [18F]FTHA, and [18F]GE-180 were used for in vivo PET imaging in wild-type and APPPS1 mice. Ex vivo flow cytometry and histology in brains complemented the in vivo findings. 1H- magnetic resonance spectroscopy in the liver, plasma metabolomics and flow cytometry of the white adipose tissue were used to confirm metaflammatory condition in the periphery. We found disrupted glucose and fatty acid metabolism after Western diet consumption, with only small regional changes in glial-dependent neuroinflammation in the brains of APPPS1 mice. Further ex vivo investigations revealed cytotoxic T cell involvement in the brains of Western diet-fed mice and a disrupted plasma metabolome. 1H-magentic resonance spectroscopy and immunological results revealed diet-dependent inflammatory-like misbalance in livers and fatty tissue. Our multimodal imaging study highlights the role of the brain-liver-fat axis and the adaptive immune system in the disruption of brain homeostasis in amyloid models of Alzheimer's disease.


Assuntos
Imunidade Adaptativa , Amiloidose , Encéfalo , Dieta Ocidental , Modelos Animais de Doenças , Camundongos Transgênicos , Animais , Camundongos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/imunologia , Amiloidose/metabolismo , Amiloidose/patologia , Amiloidose/imunologia , Dieta Ocidental/efeitos adversos , Camundongos Endogâmicos C57BL , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/imunologia
3.
Methods Mol Biol ; 2769: 57-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315388

RESUMO

Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease (NAFLD). Obesity is a known risk factor of NASH, which, in turn, increases the risk of developing cirrhosis (liver scarring) and hepatocellular carcinoma (HCC). In addition to being a potentially life-threatening condition, public health concerns surrounding NASH are amplified by the lack of FDA-approved treatments. Although various preclinical models reflecting both the histopathology and the pathophysiological progression of human NASH exist, most of these models are diet-based and require 6-13 months for NASH symptom manifestation. Here, we describe a simple and rapid-progression model of NASH and NASH-driven HCC in mice. Mice received a western diet equivalent (WD; i.e., a high-fat, high-fructose, and high-cholesterol diet), high-sugar water (23.1 g/L fructose and 18.9 g/L glucose), and weekly intraperitoneal injections of carbon tetrachloride (CCl4) at a dose of 0.2 µL/g of body weight. The resulting phenotype, consisting in liver fibrosis and HCC, appeared within 24 weeks of diet/treatment initiation and presented similar histological and transcriptomic features as human NASH and NASH-driven HCC, thereby supporting the adequacy of this preclinical model for the development and evaluation of drugs that can prevent or reverse these diseases.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Carcinoma Hepatocelular/genética , Tetracloreto de Carbono/toxicidade , Neoplasias Hepáticas/patologia , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Cirrose Hepática/patologia , Frutose , Dieta Hiperlipídica/efeitos adversos , Fígado/patologia , Camundongos Endogâmicos C57BL
4.
Food Funct ; 15(3): 1250-1264, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38194248

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases worldwide. NAFLD is caused by numerous factors, including the genetic susceptibility, oxidative stress, unhealthy diet, and gut microbiota dysbiosis. Among these, gut microbiota is a key factor and plays an important role in the development of NAFLD. Therefore, modulating the composition and structure of gut microbiota might provide a new intervention strategy for NAFLD. Highland barley ß-glucan (HBG) is a polysaccharide that can interact with gut microbiota after entering the lower gastrointestinal tract and subsequently improves NAFLD. Therefore, a Western diet was used to induce NAFLD in mouse models and the intervention effects and underlying molecular mechanisms of HBG on NAFLD mice based on gut microbiota were explored. The results indicated that HBG could regulate the composition of gut microbiota in NAFLD mice. In particular, HBG increased the abundance of short-chain fatty acids (SCFA)-producing bacteria (Prevotella-9, Bacteroides, and Roseburia) as well as SCFA contents. The increase in SCFA contents might activate the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, thereby improving the liver lipid metabolism disorder and reducing liver lipid deposition.


Assuntos
Microbioma Gastrointestinal , Hordeum , Hepatopatia Gordurosa não Alcoólica , beta-Glucanas , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , beta-Glucanas/farmacologia , Dieta Ocidental/efeitos adversos , Fígado/metabolismo , Suplementos Nutricionais , Lipídeos/farmacologia , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica
5.
Maturitas ; 179: 107868, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925868

RESUMO

OBJECTIVE: To explore the association between three previously identified and validated dietary patterns (Western, Prudent and Mediterranean) and breast cancer risk by tumour subtype and menopausal status. METHODS: Data from the Spanish cohort of the European Prospective Investigation into Cancer and Nutrition study provided epidemiological information (including diet and cancer incidence) from 24,892 women (639 breast cancer cases) recruited between 1992 and 1996. The associations between adherence to the three dietary patterns and breast cancer risk (overall and by tumour subtype) were explored by fitting multivariate Cox proportional hazards regression models stratified by region, among other variables. A possible interaction with menopausal status (changing over time) was explored. RESULTS: No clear association of the Prudent and Mediterranean dietary patterns with breast cancer risk was found. When compared with women with a level of adherence to the Western diet in the first quartile, women with a level of adherence in the third (hazard ratio (95 % confidence interval) (HR(95%CI)):1.37 (1.07;1.77)) and fourth quartiles (1.37 (1.03;1.83)); p for curvature of splines = 0.016) showed a non-linear increased risk, especially postmenopausal women (HR (95 % CI) 1.30 (0.98;1.72) in the third and 1.42 (1.04;1.94) in the fourth quartiles; p for curvature of splines = 0.081) and for estrogen or progesterone receptor positive with human epidermal growth factor receptor 2 negative tumours (HR (95 % CI) 1.62 (1.10;2.38) and 1.71 (1.11;2.63) for the third and fourth quartiles respectively; p for curvature of splines = 0.013). CONCLUSIONS: Intake of foods such as high-fat dairy products, red and processed meats, refined grains, sweets, caloric drinks, convenience food and sauces might be associated with a higher risk of breast cancer.


Assuntos
Neoplasias da Mama , Dieta Ocidental , Humanos , Feminino , Dieta Ocidental/efeitos adversos , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/etiologia , Espanha/epidemiologia , Fatores de Risco , Estudos Prospectivos , Dieta/efeitos adversos , Carne , Modelos de Riscos Proporcionais
6.
Nutrients ; 15(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068731

RESUMO

Ultra-processed foods (UPFs) have gained substantial attention in the scientific community due to their surging consumption and potential health repercussions. In addition to their well-established poor nutritional profile, UPFs have been implicated in containing various dietary oxidized sterols (DOxSs). These DOxSs are associated with a spectrum of chronic diseases, including cardiometabolic conditions, cancer, diabetes, Parkinson's, and Alzheimer's disease. In this study, we present a comprehensive database documenting the presence of DOxSs and other dietary metabolites in >60 UPFs commonly consumed as part of the Western diet. Significant differences were found in DOxS and phytosterol content between ready-to-eat (RTE) and fast foods (FFs). Biomarker analysis revealed that DOxS accumulation, particularly 25-OH and triol, can potentially discriminate between RTEs and FFs. This work underscores the potential utility of dietary biomarkers in early disease detection and prevention. However, an essential next step is conducting exposure assessments to better comprehend the levels of DOxS exposure and their association with chronic diseases.


Assuntos
Ingestão de Energia , Alimento Processado , Humanos , Dieta Ocidental/efeitos adversos , Manipulação de Alimentos , Dieta , Fast Foods , Esteróis , Doença Crônica , Estresse Oxidativo
7.
Gut Microbes ; 15(2): 2283147, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37990909

RESUMO

Host diet and gut microbiota interact to contribute to perioperative complications, including anastomotic leak (AL). Using a murine surgical model of colonic anastomosis, we investigated how diet and fecal microbial transplantation (FMT) impacted the intestinal microbiota and if a predictive signature for AL could be determined. We hypothesized that a Western diet (WD) would impact gut microbial composition and that the resulting dysbiosis would correlate with increased rates of AL, while FMT from healthy, lean diet (LD) donors would reduce the risk of AL. Furthermore, we predicted that surgical outcomes would allow for the development of a microbial preclinical translational tool to identify AL. Here, we show that AL is associated with a dysbiotic microbial community characterized by increased levels of Bacteroides and Akkermansia. We identified several key taxa that were associated with leak formation, and developed an index based on the ratio of bacteria associated with the absence and presence of leak. We also highlight a modifiable connection between diet, microbiota, and anastomotic healing, potentially paving the way for perioperative modulation by microbiota-targeted therapeutics to reduce AL.


Assuntos
Microbioma Gastrointestinal , Camundongos , Humanos , Animais , Modelos Animais de Doenças , Colo/cirurgia , Colo/microbiologia , Anastomose Cirúrgica/efeitos adversos , Transplante de Microbiota Fecal/métodos , Fístula Anastomótica/microbiologia , Dieta Ocidental/efeitos adversos
8.
Food Res Int ; 173(Pt 2): 113450, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803779

RESUMO

In this study, we aimed to evaluate the impact of consuming refined mackerel oil (MO) from rest raw material on hepatic fat accumulation, glucose tolerance, and metabolomic changes in the liver from male C57BL/6N mice. The mice were fed either a Western diet (WD) or a chow diet, with 30 g or 60 g MO per kg of diet (3% or 6%) for 13 weeks. Body weight, energy intake, and feed efficiency were monitored throughout the experiment. A glucose tolerance test was conducted after 11 weeks, and metabolomic analyses of the liver were performed at termination. Inclusion of MO in the WD, but not in the chow diet, led to increased liver weight, hepatic lipid accumulation, elevated fasting blood glucose, reduced glucose tolerance, and insulin sensitivity. Hepatic levels of eicosapentaenoic and docosahexaenoic acid increased, but no changes in levels of saturated and monounsaturated fatty acids were observed. The liver metabolomic profile was different between mice fed a WD with or without MO, with a reduction in choline ether lipids, phosphatidylcholines, and sphingomyelins in mice fed MO. This study demonstrates that supplementing the WD, but not the chow diet, with refined MO accelerates accumulation of hepatic fat droplets and negatively affects blood glucose regulation. The detrimental effects of supplementing a WD with MO were accompanied by increased fat digestibility and overall energy intake, and lower levels of choline and choline-containing metabolites in liver tissue.


Assuntos
Dieta Ocidental , Perciformes , Camundongos , Masculino , Animais , Dieta Ocidental/efeitos adversos , Glicemia/metabolismo , Colina/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Ácidos Graxos Monoinsaturados
9.
J Cachexia Sarcopenia Muscle ; 14(6): 2835-2850, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37879629

RESUMO

BACKGROUND: This study was designed to develop an understanding of the pathophysiology of traumatic muscle injury in the context of Western diet (WD; high fat and high sugar) and obesity. The objective was to interrogate the combination of WD and injury on skeletal muscle mass and contractile and metabolic function. METHODS: Male and female C57BL/6J mice were randomized into four groups based on a two-factor study design: (1) injury (uninjured vs. volumetric muscle loss [VML]) and (2) diet (WD vs. normal chow [NC]). Electrophysiology was used to test muscle strength and metabolic function in cohorts of uninjured + NC, uninjured + WD, VML + NC and VML + WD at 8 weeks of intervention. RESULTS: VML-injured male and female mice both exhibited decrements in muscle mass (-17%, P < 0.001) and muscle strength (-28%, P < 0.001); however, VML + WD females had a 28% greater muscle mass compared to VML + NC females (P = 0.034), a compensatory response not detected in males. VML-injured male and female mice both had lower carbohydrate- and fat-supported muscle mitochondrial respiration (JO2 ) and less electron conductance through the electron transport system (ETS); however, male VML-WD had 48% lower carbohydrate-supported JO2 (P = 0.014) and 47% less carbohydrate-supported electron conductance (P = 0.026) compared to male VML + NC, and this diet-injury phenotype was not present in females. ETS electron conductance starts with complex I and complex II dehydrogenase enzymes at the inner mitochondrial membrane, and male VML + WD had 31% less complex I activity (P = 0.004) and 43% less complex II activity (P = 0.005) compared to male VML + NC. This was a diet-injury phenotype not present in females. Pyruvate dehydrogenase (PDH), ß-hydroxyacyl-CoA dehydrogenase, citrate synthase, α-ketoglutarate dehydrogenase and malate dehydrogenase metabolic enzyme activities were evaluated as potential drivers of impaired JO2 in the context of diet and injury. There were notable male and female differential effects in the enzyme activity and post-translational regulation of PDH. PDH enzyme activity was 24% less in VML-injured males, independent of diet (P < 0.001), but PDH enzyme activity was not influenced by injury in females. PDH enzyme activity is inhibited by phosphorylation at serine-293 by PDH kinase 4 (PDK4). In males, there was greater total PDH, phospho-PDHser293 and phospho-PDH-to-total PDH ratio in WD mice compared to NC, independent of injury (P ≤ 0.041). In females, PDK4 was 51% greater in WD compared to NC, independent of injury (P = 0.025), and was complemented by greater phospho-PDHser293 (P = 0.001). CONCLUSIONS: Males are more susceptible to muscle metabolic dysfunction in the context of combined WD and traumatic injury compared to females, and this may be due to impaired metabolic enzyme functions.


Assuntos
Dieta Ocidental , Doenças Musculares , Camundongos , Masculino , Feminino , Animais , Dieta Ocidental/efeitos adversos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Oxirredutases/metabolismo , Carboidratos
11.
Nutrients ; 15(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37375654

RESUMO

The Western diet is a modern dietary pattern characterized by high intakes of pre-packaged foods, refined grains, red meat, processed meat, high-sugar drinks, candy, sweets, fried foods, conventionally raised animal products, high-fat dairy products, and high-fructose products. The present review aims to describe the effect of the Western pattern diet on the metabolism, inflammation, and antioxidant status; the impact on gut microbiota and mitochondrial fitness; the effect of on cardiovascular health, mental health, and cancer; and the sanitary cost of the Western diet. To achieve this goal, a consensus critical review was conducted using primary sources, such as scientific articles, and secondary sources, including bibliographic indexes, databases, and web pages. Scopus, Embase, Science Direct, Sports Discuss, ResearchGate, and the Web of Science were used to complete the assignment. MeSH-compliant keywords such "Western diet", "inflammation", "metabolic health", "metabolic fitness", "heart disease", "cancer", "oxidative stress", "mental health", and "metabolism" were used. The following exclusion criteria were applied: (i) studies with inappropriate or irrelevant topics, not germane to the review's primary focus; (ii) Ph.D. dissertations, proceedings of conferences, and unpublished studies. This information will allow for a better comprehension of this nutritional behavior and its effect on an individual's metabolism and health, as well as the impact on national sanitary systems. Finally, practical applications derived from this information are made.


Assuntos
Dieta , Carne Vermelha , Animais , Dieta Ocidental/efeitos adversos , Carne , Laticínios
12.
Nutrients ; 15(10)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37242285

RESUMO

The areca nut is often consumed as a chewing food in the Asian region. Our previous study revealed that the areca nut is rich in polyphenols with high antioxidant activity. In this study, we further assessed the effects and molecular mechanisms of the areca nut and its major ingredients on a Western diet-induced mice dyslipidemia model. Male C57BL/6N mice were divided into five groups and fed with a normal diet (ND), Western diet (WD), WD with areca nut extracts (ANE), areca nut polyphenols (ANP), and arecoline (ARE) for 12 weeks. The results revealed that ANP significantly reduced WD-induced body weight, liver weight, epididymal fat, and liver total lipid. Serum biomarkers showed that ANP ameliorated WD-enhanced total cholesterol and non-high-density lipoprotein (non-HDL). Moreover, analysis of cellular signaling pathways revealed that sterol regulatory element-binding protein 2 (SREBP2) and enzyme 3-hydroxy-3-methylglutaryld coenzyme A reductase (HMGCR) were significantly downregulated by ANP. The results of gut microbiota analysis revealed that ANP increased the abundance of beneficial bacterium Akkermansias and decreased the abundance of the pathogenic bacterium Ruminococcus while ARE shown the opposite result to ANP. In summary, our data indicated that areca nut polyphenol ameliorated WD-induced dyslipidemia by increasing the abundance of beneficial bacteria in the gut microbiota and reducing the expressions of SREBP2 and HMGCR while areca nut ARE inhibited this improvement potential.


Assuntos
Areca , Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Areca/química , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Nozes , Dieta Ocidental/efeitos adversos , Camundongos Endogâmicos C57BL , Arecolina/farmacologia , Extratos Vegetais/farmacologia
13.
Microbiome ; 11(1): 96, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37131223

RESUMO

BACKGROUND: The Western dietary pattern, characterized by high consumption of fats and sugars, has been strongly associated with an increased risk of developing Crohn's disease (CD). However, the potential impact of maternal obesity or prenatal exposure to a Western diet on offspring's susceptibility to CD remains unclear. Herein, we investigated the effects and underlying mechanisms of a maternal high-fat/high-sugar Western-style diet (WD) on offspring's susceptibility to 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced Crohn's-like colitis. METHODS: Maternal dams were fed either a WD or a normal control diet (ND) for eight weeks prior to mating and continued throughout gestation and lactation. Post-weaning, the offspring were subjected to WD and ND to create four groups: ND-born offspring fed a normal diet (N-N) or Western diet (N-W), and WD-born offspring fed a normal (W-N) or Western diet (W-W). At eight weeks of age, they were administered TNBS to induce a CD model. RESULTS: Our findings revealed that the W-N group exhibited more severe intestinal inflammation than the N-N group, as demonstrated by a lower survival rate, increased weight loss, and a shorter colon length. The W-N group displayed a significant increase in Bacteroidetes, which was accompanied by an accumulation of deoxycholic acid (DCA). Further experimentation confirmed an increased generation of DCA in mice colonized with gut microbes from the W-N group. Moreover, DCA administration aggravated TNBS-induced colitis by promoting Gasdermin D (GSDMD)-mediated pyroptosis and IL-1beta (IL-1ß) production in macrophages. Importantly, the deletion of GSDMD effectively restrains the effect of DCA on TNBS-induced colitis. CONCLUSIONS: Our study demonstrates that a maternal Western-style diet can alter gut microbiota composition and bile acid metabolism in mouse offspring, leading to an increased susceptibility to CD-like colitis. These findings highlight the importance of understanding the long-term consequences of maternal diet on offspring health and may have implications for the prevention and management of Crohn's disease. Video Abstract.


Assuntos
Colite , Doença de Crohn , Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Feminino , Camundongos , Animais , Doença de Crohn/induzido quimicamente , Dieta Ocidental/efeitos adversos , Colite/induzido quimicamente , Dieta Hiperlipídica/efeitos adversos , Ácido Desoxicólico , Camundongos Endogâmicos C57BL
14.
J Biol Chem ; 299(6): 104779, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142224

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is associated with an increased ratio of classically activated M1 macrophages/Kupffer cells to alternatively activated M2 macrophages, which plays an imperative role in the development and progression of NAFLD. However, little is known about the precise mechanism behind macrophage polarization shift. Here, we provide evidence regarding the relationship between the polarization shift in Kupffer cells and autophagy resulting from lipid exposure. High-fat and high-fructose diet supplementation for 10 weeks significantly increased the abundance of Kupffer cells with an M1-predominant phenotype in mice. Interestingly, at the molecular level, we also observed a concomitant increase in expression of DNA methyltransferases DNMT1 and reduced autophagy in the NAFLD mice. We also observed hypermethylation at the promotor regions of autophagy genes (LC3B, ATG-5, and ATG-7). Furthermore, the pharmacological inhibition of DNMT1 by using DNA hypomethylating agents (azacitidine and zebularine) restored Kupffer cell autophagy, M1/M2 polarization, and therefore prevented the progression of NAFLD. We report the presence of a link between epigenetic regulation of autophagy gene and macrophage polarization switch. We provide the evidence that epigenetic modulators restore the lipid-induced imbalance in macrophage polarization, therefore preventing the development and progression of NAFLD.


Assuntos
Autofagia , Polaridade Celular , Macrófagos , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Autofagia/efeitos dos fármacos , Autofagia/genética , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Epigênese Genética/efeitos dos fármacos , Fígado/citologia , Fígado/fisiopatologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Inibidores Enzimáticos/farmacologia , Metilação de DNA/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Células RAW 264.7 , Técnicas de Silenciamento de Genes
15.
Cell Mol Biol (Noisy-le-grand) ; 69(2): 162-171, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37224028

RESUMO

We have previously reported that the α1 subunit of sodium-potassium adenosine triphosphatase (Na/K-ATPase), acts as a receptor and an amplifier for reactive oxygen species, in addition to its distinct pumping function. On this background, we speculated that the blockade of Na/K-ATPase-induced ROS amplification with a specific peptide, pNaKtide, might attenuate the development of steatohepatitis. To test this hypothesis, pNaKtide was administered to a murine model of NASH: the C57Bl6 mouse fed a "western" diet containing high amounts of fat and fructose. The administration of pNaKtide reduced obesity as well as hepatic steatosis, inflammation and fibrosis. Of interest, we also noted a marked improvement in mitochondrial fatty acid oxidation, insulin sensitivity, dyslipidemia and aortic streaking in this mouse model. To further elucidate the effects of pNaKtide on atherosclerosis, similar studies were performed in ApoE knockout mice also exposed to the western diet. In these mice, pNaKtide not only improved steatohepatitis, dyslipidemia, and insulin sensitivity but also ameliorated significant aortic atherosclerosis. Collectively, this study demonstrates that the Na/K-ATPase/ROS amplification loop contributes significantly to the development and progression of steatohepatitis and atherosclerosis. Furthermore, this study presents a potential treatment, the pNaKtide, for the metabolic syndrome phenotype.


Assuntos
Aterosclerose , Fígado Gorduroso , Resistência à Insulina , Animais , Camundongos , Dieta Ocidental/efeitos adversos , Espécies Reativas de Oxigênio , Aterosclerose/tratamento farmacológico , Fígado Gorduroso/tratamento farmacológico , Camundongos Endogâmicos C57BL , Adenosina Trifosfatases
16.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108182

RESUMO

Cystathionine-ß-synthase (CBS) is highly expressed in the liver, and deficiencies in Cbs lead to hyperhomocysteinemia (HHCy) and disturbed production of antioxidants such as hydrogen sulfide. We therefore hypothesized that liver-specific Cbs deficient (LiCKO) mice would be particularly susceptible to the development of non-alcoholic fatty liver disease (NAFLD). NAFLD was induced by a high-fat high-cholesterol (HFC) diet; LiCKO and controls were split into eight groups based on genotype (con, LiCKO), diet (normal diet, HFC), and diet duration (12 weeks, 20 weeks). LiCKO mice displayed intermediate to severe HHCy. Plasma H2O2 was increased by HFC, and further aggravated in LiCKO. LiCKO mice fed an HFC diet had heavier livers, increased lipid peroxidation, elevated ALAT, aggravated hepatic steatosis, and inflammation. LiCKO mice showed decreased L-carnitine in the liver, but this did not result in impaired fatty acid oxidation. Moreover, HFC-fed LiCKO mice demonstrated vascular and renal endothelial dysfunction. Liver and endothelial damage correlated significantly with systemic ROS status. In conclusion, this study demonstrates an important role for CBS in the liver in the development of NAFLD, which is most probably mediated through impaired defense against oxidative stress.


Assuntos
Hiper-Homocisteinemia , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Espécies Reativas de Oxigênio , Dieta Ocidental/efeitos adversos , Peróxido de Hidrogênio , Camundongos Knockout , Fígado , Cistationina beta-Sintase/genética , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
17.
Cell Rep ; 42(4): 112393, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37058409

RESUMO

Maternal overnutrition increases inflammatory and metabolic disease risk in postnatal offspring. This constitutes a major public health concern due to increasing prevalence of these diseases, yet mechanisms remain unclear. Here, using nonhuman primate models, we show that maternal Western-style diet (mWSD) exposure is associated with persistent pro-inflammatory phenotypes at the transcriptional, metabolic, and functional levels in bone marrow-derived macrophages (BMDMs) from 3-year-old juvenile offspring and in hematopoietic stem and progenitor cells (HSPCs) from fetal and juvenile bone marrow and fetal liver. mWSD exposure is also associated with increased oleic acid in fetal and juvenile bone marrow and fetal liver. Assay for transposase-accessible chromatin with sequencing (ATAC-seq) profiling of HSPCs and BMDMs from mWSD-exposed juveniles supports a model in which HSPCs transmit pro-inflammatory memory to myeloid cells beginning in utero. These findings show that maternal diet alters long-term immune cell developmental programming in HSPCs with proposed consequences for chronic diseases featuring altered immune/inflammatory activation across the lifespan.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Humanos , Animais , Feminino , Dieta Ocidental/efeitos adversos , Primatas , Imunidade Inata
18.
Nutrients ; 15(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37111185

RESUMO

Colorectal cancer diagnosed in individuals under 50 years old is called early-onset colorectal cancer (EOCRC), and its incidence has been rising worldwide. Simultaneously occurring with increasing obesity, this worrisome trend is partly explained by the strong influence of dietary elements, particularly fatty, meaty, and sugary food. An animal-based diet, the so-called Western diet, causes a shift in dominant microbiota and their metabolic activity, which may disrupt the homeostasis of hydrogen sulfide concentration. Bacterial sulfur metabolism is recognized as a critical mechanism of EOCRC pathogenesis. This review evaluates the pathophysiology of how a diet-associated shift in gut microbiota, so-called the microbial sulfur diet, provokes injuries and inflammation to the colonic mucosa and contributes to the development of CRC.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Enxofre , Neoplasias Colorretais/metabolismo , Dieta Ocidental/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Enxofre/metabolismo , Humanos
19.
Nat Commun ; 14(1): 228, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646715

RESUMO

The interplay between western diet and gut microbiota drives the development of non-alcoholic fatty liver disease and its progression to non-alcoholic steatohepatitis. However, the specific microbial and metabolic mediators contributing to non-alcoholic steatohepatitis remain to be identified. Here, a choline-low high-fat and high-sugar diet, representing a typical western diet, named CL-HFS, successfully induces male mouse non-alcoholic steatohepatitis with some features of the human disease, such as hepatic inflammation, steatosis, and fibrosis. Metataxonomic and metabolomic studies identify Blautia producta and 2-oleoylglycerol as clinically relevant bacterial and metabolic mediators contributing to CL-HFS-induced non-alcoholic steatohepatitis. In vivo studies validate that both Blautia producta and 2-oleoylglycerol promote liver inflammation and hepatic fibrosis in normal diet- or CL-HFS-fed mice. Cellular and molecular studies reveal that the GPR119/TAK1/NF-κB/TGF-ß1 signaling pathway mediates 2-oleoylglycerol-induced macrophage priming and subsequent hepatic stellate cell activation. These findings advance our understanding of non-alcoholic steatohepatitis pathogenesis and provide targets for developing microbiome/metabolite-based therapeutic strategies against non-alcoholic steatohepatitis.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Inflamação/patologia , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
20.
Nutr Neurosci ; 26(4): 332-344, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35296223

RESUMO

OBJECTIVES: Apple pomace, a waste byproduct of apple processing, is rich in nutrients (e.g. polyphenols and soluble fiber) with the potential to be neuroprotective. The aim of this study was to employ RNA-sequencing (RNASeq) technology to investigate diet-gene interactions in the hypothalamus of rats after feeding a Western diet calorically substituted with apple pomace. METHODS: Adolescent (age 21-29 days) female Sprague-Dawley rats were randomly assigned (n = 8 rats/group) to consume either a purified standard diet, Western (WE) diet, or Western diet calorically substituted with 10% apple pomace (WE/AP) for 8 weeks. RNA-seq was performed (n = 5 rats/group) to determine global differentially expressed genes in the hypothalamus. RESULTS: RNA-seq results comparing rats fed WE to WE/AP revealed 15 differentially expressed genes in the hypothalamus. Caloric substitution of WE diet with 10% apple pomace downregulated (q < 0.06) five genes implicated in brain aging and neurodegenerative disorders: synuclein alpha, phospholipase D family member 5, NADH dehydrogenase Fe-S protein 6, choline O-acetyltransferase, and frizzled class receptor 6. DISCUSSION: Altered gene expression of these five genes suggests that apple pomace ameliorated synthesis of the neurotransmitter, acetylcholine, in rats fed a WE diet. Apple pomace, a rich source of antioxidant polyphenols and soluble fiber, has been shown to reverse nonalcoholic fatty liver disease (NAFLD). Diet-induced NAFLD decreases hepatic de novo synthesis of choline, a precursor to acetylcholine. Based on preclinical evidence, apple pomace has the potential to be a sustainable functional food for maintaining brain function and for reducing the risk of neurodegeneration.


Assuntos
Malus , Hepatopatia Gordurosa não Alcoólica , Ratos , Feminino , Animais , Dieta Ocidental/efeitos adversos , Ratos Sprague-Dawley , Acetilcolina , Polifenóis/farmacologia , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA